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Abstract. We describe a group theoretlcal method for evaluating hydrogenic two-body 
radial integrals such as Slater or Marvin integrals. We define a special coupling procedure 
of the two SO(2, 1)  Lie algebras associated with the radial wavefunctions of the two particles. 
The two-body operators of interest transform like tensor operators of the coupled algebra. 
The Slater or Marvin integrals can finally be written as a sum of integrals very similar to 
Slater or Marvin integrals of the simplest possible type, this expansion being very easy to 
carry out since the coefficients are mainly SO(2, I )  Clebsch-Gordan coefficients (CGC).  

1. Introduction 

The dynamical (invariance or non-invariance) symmetries of the hydrogen atom have 
been extensively investigated for a long time (see for example Englefield 1972). However, 
during many years the impact of these studies on atomic physics remained rather 
weak. The reason is that the corresponding formalism does not allow us to take advan- 
tage of the symmetry properties in the evaluation of the integrals between hydrogenic 
radial wavefunctions which appear if one utilizes the hydrogenic model as an approxi- 
mation to the many-electron atom. 

A new approach for dealing with the symmetry properties of the hydrogenic radial 
wavefunctions was defined by Armstrong (1970, 1971). He introduces an SO(2. 1) Lie 
algebra acting on the radial wavefunctions only; it appears to be particularly well- 
adapted to the use of the concept of tensor operator and consequently to the evaluation 
of radial integrals. However, up to  now only one-body integrals have been evaluated 
by this technique; this is of course an important limitation in the perspective of the 
study of many-electron atoms. For example, in order to deal with the interelectronic 
interaction we must be able to  evaluate two-body integrals : the Slater integrals (Slater 
1929) and, for the internal magnetic interactions, the Marvin integrals (Marvin 1947). 
Up  to now the only group theoretical evaluation of these two-body integrals has been 
limited to Slater integrals of the type F o ( n l , ,  nl,) (Kumei 1974) (where finite SO(2, 1) 
transformations were used). The object of this paper is to show that the hydrogenic 
Slater and Marvin integrals can be calculated in a rather simple and almost quite 
general way if one uses Armstrong's results and if one defines a convenient coupling 
procedure for two SO(2, 1) Lie algebras associated with the radial wavefunctions of the 
two electrons. 
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2. One-body radial integrals 

Armstrong’s approach is directly related to the possibility of transforming the hydrogenic 
radial equation into a factorizable equation of the type B (Infeld and Hull 1951). Then 
following Miller (1968) the generators of a Lie algebra can be obtained from the ladder 
operators by introducing a supplementary variable r which has a priori no physical 
meaning. These generators can be written : 

J ,  = -2, 

J ,  = e*”[a,T b ex k ( - id, i)] 
They form, with a convenient definition of the scalar product, a realization of the real 
form SO(2 ,  1) of the Lie algebra B,.  The basis functions of this realization are 

O;(x, r ;  b )  = e“‘&(x; b) 

[d2/dxz - bZ e2x + 2bv ex - (A + $)2] 4((x ; b) = 0 ; 

( 2 )  

(3) 

b is a parameter which characterizes the realization (I) ,  v is the eigenvalue of J ,  and i, is 
related to the eigenvalue o of the Casimir operator of the algebra by o = E.(;.+ 1) .  
Furthermore. the normalized solutions of equation (3) are associated, if b > 0. with 
basis functions of bounded-below unitary irreducible representations (UIR) of the type 
ti. (i. > - )), for which the spectrum of J ,  is v = i. + l,A + 2.. . . . 

The hydrogenic radial equation can be transformed into the form (3) and we can 

where the latter functions are solutions of a factorizable equation of the type B : 

write the radial wavefunctions as 

R,,(r)  = C,, ex”$((x; z/n) 
where x = In r,  the constant b of equations 
is a normalization constant : 

c,, = z ( ~ 2 ) n  - 3 / 2 ( 2 1 +  1 )- 1’2, 

(4 1 
1 )  can now be identified as b = Z/n and C,, 

( 5 )  
The tensor operators which are defined as functions of x and t are 

(6) p t  = ei4t eKx, 

and the integrals of 9 are equal to matrix elements of Pk+’. Since the parameter b 
of equations (1) depends upon n, the Wigner-Eckart theorem can be used directly only 
for integrals which are diagonal in n .  However, for non-diagonal integrals we can obtain 
a generalization (Crubellier 1974) of the formulae derived in the diagonal case. For this 
we use the fact that the difference between the generators of two Lie algebras (1) corres- 
ponding to different values of the parameter b is a tensor operator with respect to these 
algebras. The result is very similar to the one obtained by Badawi er al(1973), by using 
the factorization method (type B). 

3. Two-body radial integrals 

In order to extend these techniques to  two-body radial integrals, the simplest procedure 
would be to use the direct sum of the two single-electron Lie algebras. In this case one 
has of course to use two independent supplementary variables t ,  and t , .  However it 
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appears that the interesting two-body integrals do  not correspond to tensor operators 
of this coupled algebra. On the other hand it is possible to use the same t in the two 
single-electron Lie algebras. In fact it can be shown (Moshinsky 1974, private com- 
munication) that t can be interpreted as being the time, in the Schrodinger picture, 
at least if one considers the pseudo-Coulomb problem which derives from the hydro- 
genic case by changing r into r/n.  Of course if one uses a single t in the two Lie algebras 
it is no longer possible to form a direct sum, since the two Lie algebras do not commute. 
However it is possible to define a coupled Lie algebra by 

J ,  = -ia, 
(7) 

J ,  = eiif[dXl +ax2 i b, exr T b, ex' * (  -id, & l)] 

where b l ,  x1 and b,, x2 characterize respectively each electron. If we define the scalar 
product on the space of the functions of x l ,  x2 and t by 

+ m  

(@I@') = f n ( d t / ? n ) j + m  dx, j-, dx,@(~~,~,,t)*@'(x~,x~,t)e~~~+~~~ (8) 
0 - m  

with a + / J  = 1, this algebra is a realization (in three variables) of the real Lie algebra, 
SO(2, l), which appears to be convenient for the evaluation of hydrogenic two-body 
radial integrals, in particular for hydrogenic Slater or Marvin integrals. 

These integrals are defined by 

Rkbll19 n212 ; 4 3 ,  n414) 

= jo+ dr1 J0+ d ~ 2 ~ n l l l ( ~ 1 ) R n 2 1 1 ( ~ 2 ) ~ n 3 1 3 ( r l ) R n 4 1 4 ( ~ 2 ) ~ ~ ,  (9) 

where Sk, = a = 1 for the Slater integrals and a = 3 for the Marvin integrals. 
By using equations (4), (2) and (8) the general integral (9) can be related to a matrix 
element by 

Rka(nlll, n 2 1 2 ;  n3135 n414) 

= CnilICn2l2Cn,l3Cn4l4 

x (@:i(z/n 1)@',2,(Z/n2)lei("1 + '2 - '4)' s;,l@~3(z/n3)@~4(z/n,)) (10) 
with s;, = e k X <  e - ( k + l l X >  e ( 2 - 1 1 X i  e ( 2 - ! 3 ) X 2  

I t  is easy to show that the operators eiq'S;, transform like tensor operators of the 
coupled Lie algebra(7) ; the commutation relations of these operators with the generators 
are exactly those of the P," with K = 3 -a ,  that is : 

In order to use this property we must also be able to express the products of single- 
electron basis functions which appear in the matrix element of equation (10) in terms of 
basis functions of the coupled algebra. This is easy since the following relation 
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holds for the three generators (a = 3, + or -), even though J ,  is not equal to Jf +J:. 
Therefore, if we write as (~A,v,~A2v,l~Av) the SO(2, 1) CGC involving only bounded- 
below UIR, the functions defined by 

@ a 1 a 2 E ( ~ 1 ,  x2,  t ;  b,b2) 

= 1 ( t ~ l v l t ~ , v , l t ~ " P ~ : ( X 1 ,  t 1 ;  blP::(x2? 1,; b2) (1 3) 
V I . V Z  

are basis functions of the UIR TA of the coupled algebra. Moreover, if the CGC are ortho- 
normalized we can also write the reciprocal expansion : 

@;:A;; = c ( ~ ~ , v , ~ A 2 v 2 ~ ~ A v ~ ~ ~ ~ ~ ~ .  (14) 
a.v 

If we use this expansion for the bra and ket functions in the matrix element of equation 
(lo), the integral becomes a sum of matrix elements of the type: 

(@:,!;\2(z/nl, ~ / ~ ~ ) l e i ( n i  +nz-n3 skal@!$:;:(z/n3 I 9 Zh4)). (1 5 )  

The coupled algebras corresponding to the bra and ket functions are identical only if 
n, = n3 and n, = n4 (this is the same difficulty as the one which is encountered for 
monoelectronic integrals). When these identities are satisfied the Wigner-Eckart theorem 
can be applied and the matrix element (15) can be written as a product of a ratio of two 
CGC and of the following particular matrix element : 

(@$$;leW. - a')rs;al@l+i') A + 1  3 (16) 

which contains only 'head' functions, that is basis functions corresponding to the smallest 
possible eigenvalue of J ,  (v = A +  1) in a given representation 71. 

Unfortunately this matrix element is still difficult to evaluate, because the coupled 
'head' functions do not have a simple expression. In order to  evaluate it we make a 
second expansion. It can be shown that the coupled 'head' functions can be expressed 
as a sum of products of uncoupled 'head' functions, the coefficients being essentially 

@!I22 = 

So(2, 1) CGC: 

(f!,j., + 1f l2 i2  + lITjbl+ 1) 

Thus we obtain finally only matrix elements of the type: 

(18) 
e i ( j . ~  + 12 - 2.3 - &)t I (@;;+,@;;+,I s k o l q +  1 q +  1 )  

which are easy to compute because of the very simple form of the functions @ i + l  : 
(19) 

The matrix elements (18) can also be rewritten as integrals in r1  and r ,  which are (apart 
from some scale changes in r )  very similar to Slater or Marvin integrals of the simplest 
possible type, 

Q;+ , (~ ,  t ; b )  = r(2].+1)-1/2 e i ( ' . + l ) ' e - b e x e x ( j . + l . ' 2 )  

R,,(n,n, - 1. n,n2 - 1 ; n3n3-  1. n4n4- 1). (20) 

which are easy to compute (see for example Judd 1963). Then finally. having made two 
expansions (equations (14), (17)), we express the hydrogenic Slater or Marvin integrals 
as a sum of the very simple integrals of the type (20); the expansions are easy to carry out 
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because the coefficients are mainly SO(2 , l )  CGC (for the computation of these coefficients 
see for example Holman and Biedenharn 1966, 1968). 

It must be noted that for the non-diagonal case (ie n, # n , , n ,  # n4) it is possible, 
as for the one-body case, to generalize this type of calculation (Crubellier 1974). This is 
based on the fact that the difference between the generators of two coupled algebras 
corresponding to different values of the parameters b ,  and b,  of equations (7) is a tensor 
operator with respect to these algebras. 

Finally we must also notice that the present group theoretical calculation does not 
provide a transparent explanation of the various equalities between the Slater integrals 
which are found in a straightforward numerical computation of these integrals (Butler 
et all971).  In the present approach these equalities appear to derive from the properties 
of the integrals of the type (20) which are rather analogous to reduced matrix elements. 
Up to now these equalities are not explained by the S O ( 2 , l )  symmetry properties of the 
hydrogenic radial wavefunctions. Some of them have been derived by using the F-type 
factorization (Savukynas and CiZiunas 1973). 
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